Standard Absolute Multiturn Encoder EAM58

Description

Standard absolute multi-turn encoder EAM58 series has good performance against mechanical damage and can withstand higher axial and radial load. By using gear suite with unique algorithm to realize the compact structure and hollow shaft diameter up to Φ 15mm. The special processing chip with high accuracy and high stability is adopted, to ensure the single-turn resolution up to 19 bit and meet the high-precision control requirement of the field.

Features

- Various flanges available
- Mechanical multi-turn design
- · Waterproof seal improves IP level
- Hollow shaft diameter up to Φ15 mm
- Metal housing for shock resistance
- Protection class IP65
- Output cable or connector available
- · Various revolutions and resolutions available

Mechanical parameters

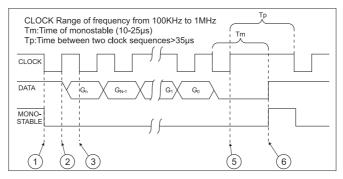
Shaft diameter	Ф6g6/Ф8g6/Ф10g6 mm
Hollow shaft diameter	Ф8Н7/Ф10Н7/Ф12Н7/Ф15Н7 mm
Protection class	IP65
Speed	6000 r/m
Max load capacity of the shaft	
Axial load capacity	80 N
Radial load capacity	160 N
Shock resistance	50G/11 ms
Vibration resistance	10G 102000 Hz
Bearing life	10 ⁹ revolution
Rotor moment of inertia	1.8×10 ⁻⁶ kgm ²
Starting torque	<0.01 Nm
Body material	AL-alloy
Housing material	Zn AL-alloy
Operating temperature	-40+80 °C
Storage temperature	-45+85 °C
Relative humidity/condensation	90%, Condensation not permitted
Weight	360750 g

Electrical parameters

Output circuit	SSI	SSI
Output driver	RS422	RS422
Resolution	Max.19 bits	Max.19 bits
Revolution	12bits	12 bits
Supply voltage	10-30 VDC	5 VDC
Power consumption (no load)	≤200 mA	≤200 mA
Permissible load (channel)	±20 mA	±20 mA
Pulse frequency	Max15 kHz	Max15 kHz
Signal level high	Typ.3.8 V	Typ.3.8 V
Signal level low	Max. 0.5 V	Max. 0.5 V
Rise timeTr	Max 100 ns	Max 100 ns
Fall timeTf	Max 100 ns	Max 100 ns

Standard Absolute Multiturn Encoder EAM58

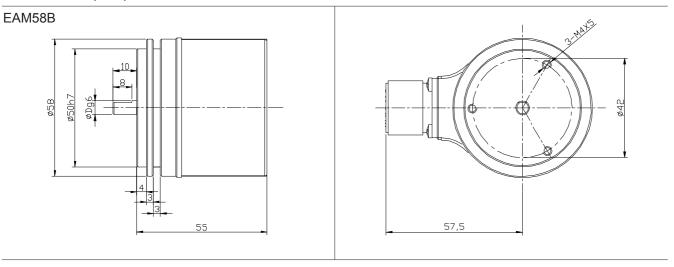
Terminal Assignment


SSI

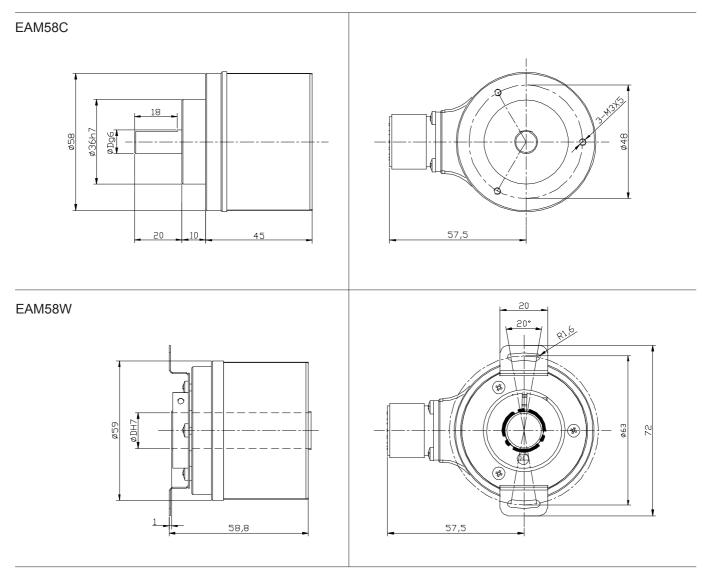
Signal	0V	+U _b	+C	-C	+D	-D	ST*	V/R*	Shield
Color	WH	BN	GN	YE	GY	PK	BU	RD	÷
12-pin	1	2	3	4	5	6	7	8	PH

ST: Reset input, the current position value is stored as new zero position

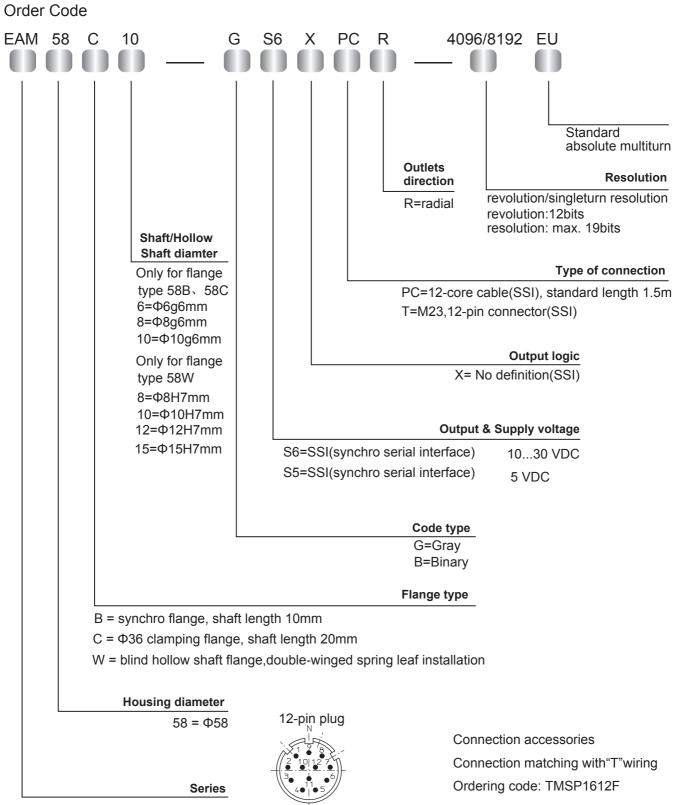
VR:Up/down input, as this input is active, decreasing code values are transmitted when shaft turning clockwise.


Operating principle

In rest conditions, the CLOCK and DATA lines are at a high logical level and the mono-stablecircuit is disabled (high level).


- 1. On the first CLOCK signal descent front, the mono-stable is activated and the parallel value present at the input to the P/S converter is memorized in the shift register.
- 2. On the CLOCK signal ascent front, the most significant bit (MSB) is placed in the output on the DATA line.
- 3. On the CLOCK descent front when the signal is stable the controller acquires the level from the DATA line, which is the value of the most significant bit (MSB), the mono-stable is re-activated.
- 4. On each further ascent front of the CLOCK impulse sequence, the successive bits up to the least significant one are place in the output on the DATA line and acquired by the control on the descent front.
- 5. At the end of the CLOCK impulse sequence when the external control has also acquired the value of the least significant (LSB) the CLOCK impulse sequence is interrupted and therefore the mono-stable is no longer re-activated.
- 6.Once the mono-stable time (Tm) has elapsed, the DATA line returns to a high logical level and the mono-stable disables itself.

Dimensions (mm)


Standard Absolute Multiturn Encoder EAM58

Dimensions (mm)

EAM = standard absolute multiturn

This sample is for reference only,take products as the standard